FORMAL SPACES WITH FINITE-DIMENSIONAL RATIONAL HOMOTOPY

BY

YVES FELIX AND STEPHEN HALPERIN

ABSTRACT. Let S be a simply connected space. There is a certain principal fibration $K_1 \to E \xrightarrow{\pi} K_0$ in which K_1 and K_0 are products of rational Eilenberg-Mac Lane spaces and a continuous map $\phi \colon S \to E$ such that in particular $\phi_0 = \pi \circ \phi$ maps the primitive rational homology of S isomorphically to that of K_0 . A main result of this paper is the

THEOREM. If dim $\pi_*(S) \otimes \mathbf{Q} < \infty$ then ϕ is a rational homotopy equivalence if and only if all the primitive homology in $H_*(S; \mathbf{Q})$ and $H_*(K_0, S; \mathbf{Q})$ can (up to integral multiples) be represented by spheres and disk-sphere pairs.

COROLLARY. If S is formal, ϕ is a rational homotopy equivalence.

1. Introduction. Let S be a simply connected space with dim $H_p(S) < \infty$ for all p. $(H_*(S))$ denotes singular cohomology with rational coefficients.) Let $P_*(S) \subset H_*(S)$ denote the primitive subspace of the coalgebra $H_*(S)$, and fix a homogeneous basis $\alpha_i \in P_m(S)$.

Set $K_0 = \prod_i K(\mathbf{Q}; m_i)$ and let $\beta_j \in H^{m_j}(K_0)$ be the image of the fundamental class of $K(\mathbf{Q}; m_j)$ in K_0 . Choose a continuous map $\phi_0 \colon S \to K_0$ so that $\langle (\phi_0)_* \alpha_i, \beta_j \rangle = \delta_{ij}$; then $(\phi_0)_* \colon P_*(S) \stackrel{\cong}{\to} P_*(K_0)$. The relative homology $H_*(K_0, S)$ is a comodule over $H_*(K_0)$; let $P_*(K_0, S)$ denote the primitive subspace with homogeneous basis $\gamma_i \in P_n(K_0, S)$.

Because the $\phi_0^*\beta_j$ are dual to $P_*(S)$ they generate the algebra $H^*(S)$, and so ϕ_0^* is surjective. We may thus interpret $H^*(K_0, S)$ as an ideal in $H^*(K_0)$. Set $K_1 = \prod_i K(\mathbf{Q}; n_i - 1)$ and let

$$K_1 \rightarrow E \rightarrow K_0$$

be a principal fibration such that if $\omega_i \in H^{n_i}(K_0)$ is the transgressed fundamental class of $K(\mathbf{Q}; n_i - 1)$ then $\omega_i \in H^{n_i}(K_0, S)$ and $\langle \gamma_i, \omega_j \rangle = \delta_{ij}$. Standard obstruction theory shows that ϕ_0 lifts to a continuous map $\phi_1 \colon S \to E$.

Call classes $\alpha \in H_p(S)$, $\beta \in H_p(K, S)$ spherical if some integral multiple of α (respectively, β) can be represented by S^p (respectively, by (D^p, S^{p-1})). Spherical

Received by the editors June 16, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 55P62, 55Q52.

Key words and phrases. Rational homotopy, minimal model, formality, Eilenberg-Moore spectral sequence.

homology is always primitive, but the reverse inclusion usually fails. Indeed, a main theorem of this paper reads

THEOREM I. Suppose S is a simply connected space such that dim $\pi_*(S) \otimes \mathbf{Q} < \infty$. Then (with the notation above) the following two conditions are equivalent:

- (1) the primitive classes in $H_{\star}(S)$ and $H_{\star}(K_0, S)$ are all spherical,
- (2) the continuous map ϕ_1 : $S \to E$ is a rational homotopy equivalence.

Moreover, when they hold, the integers n_i are all even; the classes ω_i form a prime sequence in the free commutative graded algebra $H^*(K_0)$; and $H^*(S) \cong H^*(K_0)/I$, where I is the ideal generated by the ω_i .

REMARK. A prime (or regular) sequence in an algebra H is a sequence ω_1, \ldots such that in the factor algebra obtained by setting $\omega_1 = \cdots = \omega_{i-1} = 0$, the image of ω_i is not a zero divisor $(i = 1, 2, \ldots)$.

Theorem I can be restated in an apparently very different form. Recall that the Eilenberg-Moore spectral sequence for S [9] is a 2nd quadrant spectral sequence, converging to $H^*(\Omega S)$, which is a stronger invariant than the algebra $H^*(S)$. (Indeed $d_1: E_1^{-2,*} \to E_1^{-1,*}$ is simply the map $H^+(S) \otimes H^+(S) \to H^+(S)$.) The higher differentials are a further (but still incomplete—cf. [7, §8.13]) invariant of the rational homotopy type of S.

For certain spaces however (called *formal spaces*—the precise definition is given below) the rational homotopy type is a formal consequence of the cohomology algebra. Thus two formal spaces with isomorphic cohomology algebras have the same rational homotopy type. If a simply connected commutative graded algebra H over \mathbb{Q} has the property that $H(S) \cong H \Rightarrow S$ is formal, then H is called *intrinsically formal*.

An algebra of the form

$$\wedge X = \text{exterior algebra}(X^{\text{odd}}) \otimes \text{symmetric algebra}(X^{\text{even}})$$

is intrinsically formal. (Such algebras are exactly the cohomology algebras for a product of $K(\mathbf{Q}; n)$'s, n possibly varying.) More generally if H is the quotient of $\bigwedge X$ by an ideal generated by a prime sequence then H is intrinsically formal (cf. Remark 3.1). We call algebras of this form *hyperformal*. Since a wedge of odd spheres is intrinsically formal [7, Theorem 1.5] but usually not hyperformal, none of the implications

$$H(S)$$
 hyperformal $\Rightarrow H(S)$ intrinsically formal $\Rightarrow S$ formal

can be reversed.

On the other hand the Eilenberg-Moore spectral sequence of a formal space collapses at E_2 . Spaces whose Eilenberg-Moore sequence collapses at E_2 will therefore be called *weakly formal*.

If, for some n,

$$E_2 = E_3 = \cdots = E_n$$

then the space is called *weakly n-formal*. A space which is *n*-formal in the sense of [7] is easily seen to be weakly *n*-formal.

We can approximate weak formality in another way. Call a space spherically n-formal if

$$E_2^{-i,*} = E_{\infty}^{-i,*}, \quad i \ge n+1.$$

Evidently

$$S \text{ formal} \Rightarrow S \text{ weakly formal} \Rightarrow \cdots \Rightarrow S \text{ spherically } l\text{-formal}$$

 $\Rightarrow \cdots \Rightarrow S \text{ spherically } l\text{-formal}$

In [7, §8.13] it is shown that spherically 0-formal \Rightarrow weakly formal \Rightarrow formal. We shall give examples showing also that spherically 0-formal \Rightarrow spherically 1-formal \Rightarrow weakly formal and conjecture that in fact spherically *l*-formal \Rightarrow spherically (l+1)-formal. All this is in contrast with our restatement of Theorem I which reads

THEOREM II. Assume S is simply connected and dim $\pi_*(S) \otimes \mathbb{Q} < \infty$. Then S is spherically 1-formal $\Leftrightarrow H(S)$ is hyperformal.

REMARK. When S is a homogeneous space then spherically 1-formal can be replaced by spherically 0-formal in the theorem [3, Chapter 11, Theorem IV], but this is not true more generally even if both H(S) and $\pi_*(S) \otimes \mathbf{Q}$ have finite dimension, as is shown in §3. The corollary S formal $\Leftrightarrow H(S)$ hyperformal, under the hypotheses dim $H(S) < \infty$, dim $\pi_*(S) \otimes \mathbf{Q} < \infty$, S simply connected, has a short and elegant proof [2]. This result has also been established by A. Pazitnev.

A simple translation of [7, Theorem 8.12] shows that S is spherically 0-formal if and only if every primitive homology class in $H_*(S)$ is spherical. Slightly more subtly, we shall establish the

3.6. PROPOSITION. S is spherically 1-formal if and only if every primitive homology class in $H^*(S)$ and in $H^*(K_0, S)$ is spherical. (K_0 is as in Theorem I.)

This at least suggests why Theorem II is closely related to Theorem I.

The definitions above and Theorem II extend to the categories of path-connected topological spaces S and c-connected commutative graded differential algebras (c-connected c.g.d.a.'s) (A, d_A) over a field Γ of characteristic zero, with the following modifications.

- (i) $\pi_*(S)$ must be replaced by $\pi_{\psi}^*(S)$ or $\pi_{\psi}^*(A, d_A)$.
- (ii) Homotopy type must be suitably defined (over Γ).
- (iii) For nonnilpotent spaces S the Eilenberg-Moore sequence although convergent may not converge to $H(\Omega S)$.

The extension runs as follows:

Let (A, d_A) be a c-connected c.g.d.a over Γ . (Thus $A = \sum_{p \geq 0} A^p$; if $a \in A^p$, $b \in A^q$ then $ab = (-1)^{pq}ba$, d_A is a derivation of degree 1 and square zero, and $H^0(A, d_A) = \Gamma$.) A (minimal) model for A is a c.g.d.a. homomorphism $\phi \colon (\bigwedge X, d) \to (A, d_A)$ for which $(\bigwedge X, d)$ is a (minimal) KS complex and $\phi^* \colon H(\bigwedge X) \to H(A)$ is an isomorphism. If $(\bigwedge X, d)$ is minimal then $X^0 = 0$. (A KS (Koszul-Sullivan) complex is a differential algebra of the form $(\bigwedge X, d)$ in which $X = \sum_{p \geq 0} X^p$ and admits a well-ordered homogeneous basis x_α such that dx_α is a polynomial in the x_β with $\beta < \alpha$. It is minimal if these polynomials have no linear term.)

Now suppose S is a path-connected topological space. Then Sullivan defines a c.g.d.a. (A(S), d) over Γ [10, §7 or 5, Chapter 15], natural in S and whose cohomology is naturally isomorphic with $H(S; \Gamma)$. The minimal model of (A(S), d) is called the *minimal model* of S, and we write $\pi_{\psi}^*(A(S), d) = \pi_{\psi}^*(S)$.

A second basic result of Sullivan [10, Theorem 8.1; 1] asserts that if S_1 , S_2 are simply connected with finite rational Betti numbers, and if $\Gamma = \mathbf{Q}$ then

- (i) $\pi_{\psi}^*(S_i) \cong \operatorname{Hom}_Z(\pi_*(S_i); \mathbf{Q})$, naturally in S_i , and
- (ii) S_1 and S_2 have the same rational homotopy type \Leftrightarrow they have isomorphic minimal models.

The definition of rational homotopy type is thus extended by

DEFINITION. Two path-connected spaces (or c-connected c.g.d.a.'s over Γ) have the same Γ -homotopy type if their minimal models (over Γ) are isomorphic as c.g.d.a.'s.

The definition of formality is

DEFINITION. A path-connected space S (respectively, a c-connected c.g.d.a. (A, d_A)) is formal if (A(S), d) and (H(S), 0) (respectively, (A, d_A) and (H(A), 0)) have minimal models isomorphic as c.g.d.a.'s.

The Eilenberg-Moore spectral sequence for (A, d_A) is obtained by filtering the bar construction on (A, d_A) ; details can be found in [7, §7]. The Eilenberg-Moore sequence for a path-connected space S is the sequence for (A(S), d). With these conventions the definitions of weakly formal and spherically l-formal given earlier apply verbatim and we have

THEOREM III. Let (A, d_A) be a c-connected c.g.d.a. with dim $\pi_{\psi}^*(A, d_A) < \infty$. Then (A, d_A) is spherically 1-formal $\Leftrightarrow H(A)$ is hyperformal.

Clearly this theorem implies the identical result for path-connected spaces (replace A by A(S)) and hence contains the topological Theorem II.

The proofs of the theorems rely on the filtered models of [7]. After some preliminaries in §2, these are described in §3 where also are the examples and the proof of Proposition 3.1. The actual proofs of the theorems are in §4; these, however, depend on the results of §5.

The second major ingredient in these proofs is a careful analysis of finitely generated models whose cohomology algebra is also finitely generated, and this is deferred to §5.

As a byproduct of this analysis we obtain one final result. Let (A, d_A) have finitely generated cohomology, and suppose dim $\pi_{\psi}^*(A, d_A) < \infty$. Set

$$\chi_{\pi}(A, d_A) = \dim \pi_{\psi}^{\text{even}}(A, d_A) - \dim \pi_{\psi}^{\text{odd}}(A, d_A)$$

and

$$f_{H(A)}(t) = \sum_{p>0} \dim H^p(A)t^p.$$

Similarly, if $\bigwedge X$ is the minimal model we set $f_{\bigwedge X}(t) = \sum_{p \ge 0} \dim(\bigwedge X)^p t^p$.

Because dim $X < \infty$, $f_{\wedge X}(t)$ is convergent for |t| < 1. Because $H(\wedge X) = H(A)$, $\dim(\wedge X)^p \ge \dim H^p(A)$ and so $f_{H(A)}(t)$ is convergent for |t| < 1. Set (following Hsiang)

$$\rho_0(H(A)) = \inf \left\{ \alpha \mid \lim_{t \to 1^-} (1-t)^{\alpha} f_{H(A)}(t) = 0 \right\}.$$

As is shown, for instance in [4, Proposition 2], $\rho_0(H(A))$ is the Krull dimension of the commutative algebra $H^{\text{even}}(A)$.

In [4, Proposition 2] it is shown that $\chi_{\pi}(A, d_A) - \rho_0(H(A)) \leq 0$. On the other hand in [4] is defined a fourth quadrant spectral sequence $E_i^{p,q}$, converging to $H(A) = H(\bigwedge X)$, called the odd spectral sequence. (The definition is recalled in 2.2.) An immediate consequence of Proposition 5.6 and Lemma 5.8 in this paper is

THEOREM IV. Let A be a c-connected c.g.d.a. such that $\pi_{\psi}^*(A, d_A)$ is finite-dimensional and H(A) is a finitely generated algebra. Let k be the largest integer such that (in the odd spectral sequence) $E_{\infty}^{*,-k} \neq 0$. Then

$$k = \rho_0(H(A)) - \chi_{\pi}(A, d_A).$$

- **2. Preliminaries.** In this section we recall material which will be needed in the sequel. There are three distinct parts: \land -extensions, Koszul complexes, and dimension theory for commutative rings.
 - 2.1. \land -extensions. A \land -extension is a sequence of KS complexes

$$(\land X, d) \stackrel{i}{\rightarrow} (\land X \otimes \land Y, d) \stackrel{\rho}{\rightarrow} (\land Y, \bar{d})$$

in which i and ρ are the obvious inclusion and projection. Note that the differential in $\bigwedge X \otimes \bigwedge Y$ need *not* be of the form $d \otimes 1 \pm 1 \otimes \overline{d}$. If $\phi: (\bigwedge X, d) \to (A, d_A)$ is any c.g.d.a. homomorphism between c-connected c.g.d.a.'s, and if $(\bigwedge X, d)$ is a KS complex then there is a commutative diagram

$$(A, d_{A})$$

$$\downarrow \phi \nearrow \qquad \uparrow \psi$$

$$(\land X, d) \xrightarrow{i} (\land X \otimes \land Y, d) \xrightarrow{\rho} (\land Y, \overline{d})$$

in which the bottom row is a \land -extension, ψ^* is an isomorphism, and $(\land Y, \bar{d})$ is minimal—cf. [5, Theorem 6.1].

2.2. Koszul complexes. Suppose A is an algebra, a_1, \ldots, a_m are in the centre of A, and let X be a space with basis x_1, \ldots, x_m . A differential space $(A \otimes \bigwedge X, d)$ is defined by d(A) = 0, $dx_i = a_i$ and indeed this is the classical Koszul complex [8]. Since d is homogeneous of degree -1 with respect to the grading $A \otimes \bigwedge X = \sum_k A \otimes \bigwedge^k X$, a grading is induced in the cohomology, and we write this $H(A \otimes \bigwedge X) = \sum_k H_k(A \otimes \bigwedge X)$. Of course if $A = \sum_i A^p$ is a c.g.a. and we set deg $x_i = \deg_i a_i - 1$

then $A \otimes \wedge X$ becomes a c.g.d.a. with bigraded cohomology $H = \sum H_k^p$. Note in any case that $H_0 = A/I$, I the ideal generated by the a_i .

$$dz - d_{\sigma}z \in \triangle Z^e \otimes \triangle^+ Z^o, \quad z \in Z^o.$$

In this case the lower gradation is given by the grading $\Sigma_k \wedge Z^e \otimes \wedge^k Z^o$, and we write $H(\wedge Z, d_{\sigma}) = \sum H_k^p (\wedge Z, d_{\sigma})$.

Filter $\triangle Z$ by setting $F^p(\triangle Z)^r = \sum_{k > p-r} (\triangle Z^e \otimes \triangle^k Z^o)^r$. The resulting spectral sequence (introduced in [4] and called the odd spectral sequence) converges to $H(\triangle Z, d)$ and its E_0 , E_1 and E_2 terms are given by

$$(E_0, d_0) = (\land Z, d_\sigma)$$
 and $E_1^{p,q} = E_2^{p,q} = H_{-q}^{p+q} (\land Z, d_\sigma).$

Thus it is a fourth quadrant spectral sequence.

2.3. Dimension theory. Let R be a noetherian integral domain over our ground field Γ . Any ideal $I \subset R$ is the finite irredundant intersection of primary ideals Q_j whose prime ideals P_j are called the associated prime ideals of I. Following [11] we write dim P_j = transc. degree of the quotient field of R/P_j and dim I = inf dim P_j .

The chief result we need is a straightforward consequence of [11, Theorem 2.1, p. 195; Theorem 26, p. 203]. The result asserts that if R is a polynomial algebra over Γ on n variables then x_1, \ldots, x_s is a prime sequence if and only if the ideal I generated by x_1, \ldots, x_s satisfies $\dim I = n - s$. In this case I is unmixed, i.e. every associated prime ideal P of I satisfies $\dim P = n - s$. As a consequence we have that any permutation of a prime sequence in R is a prime sequence.

For any ideal $I \subset R$ the *dimension* of I in R depends only on R/I and is called the Krull dimension of R/I.

Let a_1, \ldots, a_s be a sequence of elements of even degree in a graded commutative algebra A. Let Y have as basis y_1, \ldots, y_s with deg $y_i = \deg a_i - 1$ and consider the Koszul complex $(A \otimes \bigwedge Y, d)$ with $dy_i = a_i$. Using the argument of [4, Lemma 2] it is easy to see that

- 2.4. LEMMA. The sequence a_1, \ldots, a_s is prime if and only if $H_+(A \otimes \wedge Y) = 0$.

Next, if (A, d_A) is any c-connected c.g.d.a. the bigraded model $(\bigwedge X, d)$ of H(A) can be perturbed to a (not necessarily minimal) model $(\bigwedge X, D)$ for (A, d_A) so that D - d: $X_k \to \sum_{j < k-1} (\bigwedge X)_j$. This is called the *filtered model* for (A, d_A) —cf. [7, §4]—and is minimal if and only if (A, d_A) is weakly formal [7, Theorem 7.20].

3.1. Remark. If H is hyperformal then $X_{\ge 2} = 0$ and so no perturbations are possible. Thus H is intrinsically formal.

Set $\overline{X}^{p,q} = X_{-\underline{p}-1}^{p+q+1}$ and extend the bigrading to $\wedge \overline{X} = \sum_{p \leqslant -1} (\wedge \overline{X})^{p,*}$. Identity $Q(\wedge X) \cong X = \overline{X}$ and denote the differential Q(D), transported to \overline{X} and extended to $\wedge \overline{X}$, by \overline{D} . Filtering $\wedge \overline{X}$ by the left-hand degree produces a spectral sequence which (from E_2 on) is isomorphic with the spectral sequence of Eilenberg-Moore [7, Theorem 7.14]. It follows easily that (A, d_A) is spherically 1-formal if and only if $\overline{X}^{-1,*} \oplus \overline{X}^{-2,*} \to H(\overline{X}, \overline{D})$ is injective. This is equivalent to the condition

(3.2)
$$X_0 \oplus X_1 \to H(X, Q(D))$$
 is injective.

- (3.3) $X_0 \to H(X, Q(D))$ is injective $((\land X, D)$ the filtered model), or
- (3.4) $U \rightarrow H(Z, Q(d))$ is injective

is equivalent to spherical 0-formality for (A, d_A) .

We come now to the examples. Because ([10, §8]) a KS complex ($\triangle Z$, d) with $Z^1 = Z^0 = 0$ and dim $Z^p < \infty$, all p, can be realized as the model of a simply connected space we need only construct the KS complex.

3.5. Example. Our first example is a filtered model which is spherically 1-formal but not weakly formal. In fact, the cohomology algebra H is even intrinsically spherically 1-formal.

Let H be the algebra $\bigwedge(u_7, u_7', u_9, u_9', u_{11}')/I$ where I is generated by $u_7u_7', u_7u_{11} - u_9u_9', u_7'u_{11} - u_9'u_9''$, and subscripts denote degrees. If $(\bigwedge X, d)$ denotes the bigraded model for (H, 0) then X_0, X_1, X_2, X_3, X_4 have bases

$$X_0: u_7, u'_7, u_9, u'_9, u''_9, u_{11}, \qquad X_1: v_{13}, v_{17}, v'_{17}, \ X_2: w_{19}, w'_{19}, w_{32}, \dots, \qquad X_3: z_{25}, z'_{25}, \dots, \qquad X_4: y_{31}, y'_{31}, \dots$$

in which the missing elements all have degrees \geq 32. Moreover d is given by

$$dv_{13} = u_7 u_7', \qquad dv_{17} = u_7 u_{11} - u_9 u_9', \qquad dv_{17}' = u_7' u_{11} - u_9' u_9'', \\ dw_{19} = v_{13} u_7, \qquad dw_{19}' = v_{13} u_7', \qquad dw_{32} = v_{17} u_7 u_9', \\ dz_{25} = w_{19} u_7, \qquad dz_{25}' = w_{19}' u_7',$$

and

$$dy_{31} = z_{25}u_7, \qquad dy_{31}' = z_{25}'u_7'.$$

Now define a perturbation D by setting

$$D = d \text{ in } X_0, X_1, \qquad Dw_{19} = v_{13}u_7 - u_9'u_{11}, \qquad Dw_{19}' = dw_{19}',$$

$$Dz_{25} = w_{19}u_7 - v_{17}u_9', \qquad Dz_{25}' = dz_{25}', \qquad Dy_{31} = z_{25}u_7 - w_{32}.$$

Because $H^p = 0$, $p \ge 30$, this operator extends to a differential D in $\triangle X$ such that (D-d): $X_k \to \sum_{i \le k-1} (\triangle X)_i$. Note that $Q(D)y_{31} = w_{32}$.

The resulting filtered model is trivially even intrinsically spherically 1-formal, but not minimal. Hence it is not weakly formal.

3.5'. Example. We construct a spherically 0-formal model which satisfies dim $\pi_{\psi}^* < \infty$, dim $H^* < \infty$ but is not spherically 1-formal. This shows that the hypothesis of spherically 1-formal in Theorem III is essential, and also that spherically 0-formal \Rightarrow spherically 1-formal.

We establish next the geometric characterization of spherical 1-formality.

3.6. Proposition. A simply connected space S with finite rational Betti numbers is spherically 1-formal if and only if the primitive homology classes in $H_*(S)$ and $H_*(K_0, S)$ are all spherical $(K_0$ as in the introduction).

PROOF. Because a generating space for $H^*(S)$ is dual to the primitive subspace of $H_*(S)$, we may assume that the map $\phi_0: S \to K_0$ of the introduction is represented by the inclusion $\bigwedge X_0 \to (\bigwedge X, D)$ in the filtered model.

Passing to cohomology we obtain the short exact sequence

$$0 \to H^*(K_0, S) \to \bigwedge X_0 \to H(\bigwedge X, D) = H(S) \to 0.$$

Since D=d in X_1 , and since $H(\bigwedge X, D)=H(\bigwedge X, d)=\bigwedge X_0/\bigwedge X_0\cdot d(X_1)$, we can identify $H^*(K_0,S)$ with the ideal $\bigwedge X_0\cdot d(X_1)$ in $\bigwedge X_0$ as a $\bigwedge X_0$ -algebra. It follows at once that $d(X_1)$ is dual to the primitive subspace of $H_*(K_0,S)$. It is now easy to see that the inclusion

$$(3.7) \qquad (\land X_0 \otimes \land X_1, d) \rightarrow (\land X, D)$$

represents $\phi_1: S \to E$ of the introduction.

In the diagram

$$\pi_{*}(S) \otimes \mathbf{Q} \xrightarrow{(\phi_{0})_{*}} \pi_{*}(K_{0}) \otimes \mathbf{Q} \rightarrow \pi_{*}(K_{0}, S) \otimes \mathbf{Q} \xrightarrow{\partial} \pi_{*}(S) \otimes \mathbf{Q}$$

$$\downarrow h_{1} \qquad \downarrow h_{2} \qquad \downarrow h_{3}$$

$$P_{*}(S) \xrightarrow{\Xi} P_{*}(K_{0}) \rightarrow P_{*}(K_{0}, S)$$

(in which the h_i are the Hurewicz homomorphisms) note that Im $h_2 \subset$ primitive subspace \subset Im $(\phi_0)_*$. Hence h_3 factors over ∂ to yield a linear map $f: \ker(\phi_0)_{\sharp} \to P_*(K_0, S)$.

Since $(\phi_0)_{\sharp}$ is dual to the map $X_0 \to H(X, Q(D))$ it follows (by a straightforward check) that f is dual to the composite

$$g: X_1 \to H(X, Q(D)) \to H(X, Q(D))/\operatorname{Im} X_0.$$

To say that every primitive class is spherical in $H_*(K_0, S)$ is to say that f is surjective. This is equivalent to g injective. Similarly the primitive classes in $H_*(S)$ are all spherical if and only if $X_0 \to H(X, Q(D))$ is injective.

In view of (3.2) this completes the proof. Q.E.D.

4. The main theorems. Preliminary to the proof of Theorems I and III we use filtered models to put the minimal model of spherically 1-formal space in a desirable form.

4.1. Proposition. If (A, d_A) is spherically 1-formal then

is the minimal model.

Now spherical 1-formality shows that $X_0 \oplus X_1 \to H(X_0 \oplus X_1 \oplus T, Q(d))$ is injective; hence Q(d) = 0 and the model is minimal. Q.E.D.

The main result is Theorem 4.2 below. Combined with its corollary and Proposition 3.6 (including the remark in the proof of Proposition 3.6 that $(X_0 \otimes X_1, d) \rightarrow (X, D)$ represents ϕ_1) it immediately implies both Theorems I and III.

- 4.2. THEOREM. Assume that (A, d_A) is spherically 1-formal, c-connected, and that $\dim \pi_{\psi}^*(A, d_A) < \infty$. Then the filtered model for (A, d_A) has the form $(\bigwedge X, d)$ with $X = X_0 \oplus X_1, X_1 = X_1^{\text{odd}}$, and $X_j = 0, j \ge 2$.
- 4.3. COROLLARY. If x_1, \ldots, x_m is a basis for X_1 then dx_1, \ldots, dx_m is a prime sequence in $\bigwedge X_0$.

PROOF. Apply Lemma 2.4, noting that necessarily $H_+(X_0 \otimes X_1, d) = 0$. Q.E.D.

4.4. PROOF OF THEOREM 4.2. The minimal model for (A, d_A) has the form of Proposition 4.1, and hence dim X_0 , dim X_1 and dim T are all finite. Since $H(A) = \bigwedge X_0 / \bigwedge X_0 \cdot d(X_1)$ it is a finitely generated algebra.

$$H(\wedge W) \otimes \wedge \overline{Y} = H(\wedge W \otimes \wedge \overline{Y}, \overline{d})$$

has finite dimension, where \bar{d} denotes the differential induced by putting Y=0. Thus the \land -extension $\land Y \otimes \land W$ satisfies the conditions in Proposition 5.1(ii) below.

We now apply the results in §5. In particular we can find $c_1, \ldots, c_r \in \bigwedge Y$ satisfying the conditions of Lemmas 5.2 and 5.7. As in Lemma 5.7 let U be a graded space with basis u_1, \ldots, u_r and degree $u_i = \text{degree} \ c_i - 1$. Extend $(\bigwedge Z, d)$ to $(\bigwedge Z \otimes \bigwedge U, D)$ by putting $Du_i = c_i$.

Lemma 5.7 asserts that dim $H(\land Z \otimes \land U, D) < \infty$. If *n* is the top degree such that $H^n(\land Z \otimes \land U, D) \neq 0$, then Lemma 5.8 asserts that

$$\lambda^*: H^n(\wedge Z, d) \to H^n(\wedge Z \otimes \wedge U, D)$$

is surjective.

On the other hand write

Let I, J, and $K \subset \bigwedge X_0$ be the ideals generated by $d(X_1), d(X_1^{\text{odd}})$ and $d(X_1^{\text{odd}}) + (c_1, \ldots, c_r)$. Then $H(\bigwedge Z, d) = H(A) = \bigwedge X_0/I$ and so $\bigwedge X_0/I$ is a finitely generated $\bigwedge (c_1, \ldots, c_r)$ module. Since I is generated by J, together with finitely many elements of odd degree, $\bigwedge X_0/J$ is also a finitely generated $\bigwedge (c_1, \ldots, c_r)$ module. Hence dim $\bigwedge X_0/K < \infty$ and it follows that

$$\dim H(\wedge X_0 \otimes \wedge X_1^{\text{odd}} \otimes \wedge U) < \infty.$$

But we know from above that $H^n(\wedge Z) \to H^n(\wedge Z \otimes \wedge U)$ is nonzero. Since every cohomology class in $H(\wedge Z)$ can be represented by an element of $\wedge X_0$, it follows that $H^n(\wedge X_0 \otimes \wedge X_1^{\text{odd}} \otimes \wedge U) \to H^n(\wedge Z \otimes \wedge U)$ is nonzero. Hence $n_1 \geq n$ and so $n_2 = 0$.

We now have that $H^+(\wedge X_1^{\text{even}} \otimes \wedge T, \overline{D}) = 0$. Since $(\wedge X_1^{\text{even}} \otimes \wedge T, \overline{D})$ is minimal we conclude that $X_1^{\text{even}} = T = 0$, and hence that the minimal model for (A, d_A) has the form $(\wedge X_0 \otimes \wedge X_1, d)$ with $X_1^{\text{even}} = 0$. Q.E.D.

- 5. Finitely generated models with finitely generated cohomology. Let (A, d_A) be a c-connected c.g.d.a.
 - 5.1. Proposition. The following two conditions on (A, d_A) are equivalent.
 - (i) dim $\pi_{\psi}^*(A, d_A) < \infty$ and H(A) is a finitely generated algebra.
- PROOF. (ii) \Rightarrow (i) Filter $\land Z$ using the degree of $\land Y$ to get a spectral sequence converging to $H(\land Z)$ with E_2 -term $\land Y \otimes H(\land W)$. It follows that E_2 (hence also E_{∞} and $H(\land Z)$) are finitely generated $\land Y$ modules. Thus $H(\land Z)$ is a finitely generated algebra.
- (i) \Rightarrow (ii) Let $(\land X, d)$ be the minimal model of (A, d_A) and let Y be an evenly graded space of finite dimension such that there is a homomorphism $\psi \colon (\land Y, 0) \to (\land X, d)$ which makes $H(\land X)$ into a finitely generated $\land Y$ module. Use 2.1 to produce a \land -extension $(\land Y, 0) \to (\land Z, d) \xrightarrow{\rho} (\land W, \overline{d})$ and an extension of ψ to a homomorphism $\phi \colon (\land Z, d) \to (\land X, d)$ such that ϕ^* is an isomorphism. Do this so that $(\land W, \overline{d})$ is minimal.

Identify $Z = Y \oplus W$ and X with the respective indecomposable spaces for $\bigwedge Z$, $\bigwedge X$ and note [5, Theorem 7.2] that ϕ induces an isomorphism $Q(\phi)^*$: $H(Y \oplus W, Q(d)) \xrightarrow{\cong} X$. Because $Q(\bar{d}) = 0$, Q(d): $W \to Y$ and it follows that dim $W < \infty$. It remains to show that dim $H(\bigwedge W, \bar{d}) < \infty$.

Define a graded space \overline{Y} by $\overline{Y}^p = Y^{p+1}$ and extend $(\wedge Z, d)$ to $(\wedge Z \otimes \wedge \overline{Y}, d)$ by putting $d\overline{y} = y$ where \overline{y} corresponds to y under the identification $\overline{Y} = Y$. Use the grading $\Sigma_k \wedge Z \otimes \wedge^k \overline{Y}$ to obtain a spectral sequence whose E_1 term is the Koszul complex $(H(\wedge Z) \otimes \wedge \overline{Y}, D)$ with $D\overline{y} = [y]$. Since $H(\wedge Z)$ is a finitely generated $\wedge Y$ module, $H_0(H(\wedge Z) \otimes \wedge \overline{Y})$ has finite dimension. But $H(H(\wedge Z) \otimes \wedge \overline{Y})$ is finitely generated as an $H_0(H(\wedge Z) \otimes \wedge \overline{Y})$ module, and it follows that $H(H(\wedge Z) \otimes \wedge \overline{Y})$ has finite dimension. This implies dim $H(\wedge W, \overline{d}) = \dim H(\wedge Z \otimes \wedge \overline{Y}, d) < \infty$. Q.E.D.

Now consider a \land -extension $\land Z = Y \otimes \land W$ satisfying the conditions of Proposition 5.1. Let $\rho: (\land Z, d) \to (\land W, \bar{d})$ be the projection and write $W^o = W^{\text{odd}}$, $W^e = W^{\text{even}}$.

5.2. Lemma. Let N be an integer divisible by the degrees of the homogeneous elements in Y. There is then a prime sequence in $\wedge Y \otimes \wedge W^e$ of the form

$$(5.3) a_1, \ldots, a_s, b_1, \ldots, b_t, c_1, \ldots, c_r,$$

and satisfying the following conditions.

- (i) $a_i = d_{\sigma}v_i$, $b_j = d_{\sigma}v_{j+s}$ for (not necessarily homogeneous) elements $v_l \in W^o$; and for any $w \in W^o$, $a_1, \ldots, a_s, b_1, \ldots, b_t$, $d_{\sigma}w$ is not prime.
 - (ii) $\bar{d}_{\sigma}v_i$ ($1 \le i \le s$) is a prime sequence in $\wedge W^e$.
 - (iii) $c_k \in (\land Y)^N$, $1 \le k \le r$.
 - (iv) $s = \dim W^e$ and $r + t = \dim Y$.

5.4. Remark. The ideal J generated by the a_i, b_j, c_k satisfies $\underline{\dim} J = 0$ (cf. 2.3) and so $\dim \triangle Z^e/J < \infty$.

PROOF OF LEMMA 5.2. By [4, Proposition 1], dim $H(\bigwedge W, \bar{d}_{\sigma}) < \infty$, and so [4, Lemma 8] yields $v_1, \ldots, v_s \in W^o$ with $s = \dim W^e$ so that $\bar{d}_{\sigma}v_i$ is a prime sequence in $\bigwedge W^e$. Then a basis of Y, followed by $d_{\sigma}v_1, \ldots, d_{\sigma}v_s$, is a prime sequence in $\bigwedge Z^e$. Since a permutation of a prime sequence is prime, $d_{\sigma}v_1, \ldots, d_{\sigma}v_s$ is a prime sequence in $\bigwedge Z^e$.

Extend this to a maximal prime sequence in $\triangle Z^e$ of the form $d_{\sigma}v_1, \ldots, d_{\sigma}v_s$, $d_{\sigma}v_{s+1}, \ldots, d_{\sigma}v_{s+t}$ with $v_l \in W^o$. Extend this in turn to a maximal prime sequence in $\triangle Z^e$ of the form $d_{\sigma}v_1, \ldots, d_{\sigma}v_{s+t}, c_1, \ldots, c_r$, with $c_k \in (\triangle Y)^N$.

The argument of [4, Lemma 8] shows that $(\land Y)^N$ is contained in one of the prime ideals P associated with the ideal J generated by this sequence. Since $(\land Y)^N$ contains a power of every homogeneous element of Y we conclude that $\land^+ Y \subset P$ and hence $\ker \rho \subset P$.

Moreover $\bar{d}_{\sigma}v_1, \ldots, \bar{d}_{\sigma}v_s \in \rho(P)$ and hence $\rho(P)$ is a prime ideal of $\dim 0$ in $\wedge W^e$. It follows that $\dim P = 0$ and so, by §2.3, $s + t + r = \dim Z^e$. Q.E.D.

5.5. LEMMA. With the hypotheses and notation of Lemma 5.2 let k be the largest integer such that $H_k(\wedge Z, d_a) \neq 0$. Then $k = \dim W^o - s - t$.

PROOF. Let $I = \bigcap_j Q_j$ be the noetherian decomposition of the ideal I generated by a_1, \ldots, b_t in $\bigwedge Z^e$ and let P_j be the prime ideal associated with the primary ideal Q_j . The maximality of a_1, \ldots, b_t means that $d_\sigma w$ is in some P_j for each $w \in W^o$. Hence by the argument of [4, Lemma 8], $d_\sigma(W^o) \subset P_1$ say. Choose $q_j \in Q_j$ so that $q_i \notin P_1$ (possible because I is unmixed so that $P_i \not\subset P_1$ for any i > 1). Set $q = \prod_j q_j$.

Now $q \notin P_1$ and so $q \notin I$. Since some power of any $d_{\sigma}w$ is in Q_1 , that power multiplied by q is in I. By multiplying q by suitable powers of the $d_{\sigma}w$ we find an element $\Phi \in \triangle Z^e$ such that $\Phi \notin I$ but such that $(d_{\sigma}w)\Phi \in I$, $w \in W^o$.

Choose now homogeneous elements $w_1, \ldots, w_k \in W^o$ which together with v_1, \ldots, v_{s+1} , give a basis. Thus $k = \dim W^o - s - t$. A projection

$$\pi: (\bigwedge Z, d_{\sigma}) \to (\bigwedge Z^e/I \otimes \bigwedge (w_1, \dots, w_k), D)$$

is given by the obvious projection in $\triangle Z^e$ together with $\pi(v_l) = 0$, $\pi(w_i) = w_i$. Because the $d_{\sigma}v_l$ are a prime sequence π^* is an isomorphism of cohomology, homogeneous of lower degree zero.

In particular $H_p(\bigwedge Z, d_\sigma) = 0$, p > k. Moreover by construction $(Dw_i)\pi\Phi = 0$ $(1 \le i \le k)$ and $\pi\Phi \ne 0$. Thus $\pi\Phi \otimes w_1 \wedge \cdots \wedge w_k$ is a nonzero cocycle (and hence represents a nonzero class) in $H_k(\bigwedge Z^e/I \otimes \bigwedge (w_1, \ldots, w_k))$. Thus $H_k(\bigwedge Z, d_\sigma) \ne 0$. Q.E.D.

5.6. PROPOSITION. With the notation and hypotheses above let k be the maximum integer such that $H_k(\wedge Z, d_{\sigma}) \neq 0$. Then

$$\rho_0(H(\wedge Z,d)) = \rho_0(H(\wedge Z,d_{\sigma})) = k + \chi_{\pi}(\wedge Z).$$

PROOF. Since the odd spectral sequence converges from $H(\bigwedge Z, d_{\sigma})$ we have $\rho_0(H(\bigwedge Z, d)) \leq \rho_0(H(\bigwedge Z, d_{\sigma}))$. Next we claim that the inclusion $\bigwedge (c_1, \ldots, c_r) \to A Z^e$ induces inclusions $\bigwedge (c_1, \ldots, c_r) \to H(\bigwedge Z, d_{\sigma})$ and $\bigwedge (c_1, \ldots, c_r) \to H(\bigwedge Z, d)$.

Indeed, recall from the proof of Lemma 5.5 that one of the prime ideals P_1 for the ideal generated by a_1, \ldots, b_t contains $d_{\sigma}(W^o)$. The argument of [4, Proposition 2] shows that the map $\bigwedge(c_1, \ldots, c_r) \to \bigwedge Z^e/P_1$ is an inclusion. Hence so is $\bigwedge(c_1, \ldots, c_r) \to \bigwedge Z^e/(d_{\sigma}W^o) = H_0(\bigwedge Z, d_{\sigma})$.

Next, suppose that for some $\Phi \in \bigwedge(c_1, \ldots, c_r)$, $\Phi = d\Psi$, $\Psi \in \bigwedge Z$. Write $\Psi = \Psi_0 + \cdots + \Psi_m$, $\Psi_i \in \bigwedge Z^e \otimes \bigwedge^i W^o$. Then the component of $d\Psi$ in $\bigwedge Z^e$ is $d_\sigma \Psi_1$ so that $\Phi = d_\sigma \Psi_1$. This implies that $\Phi = 0$ by the above argument, so that the second map is also an inclusion. From this we deduce that $r \leq \rho_0(H(\bigwedge Z, d))$.

On the other hand, by the remark after Lemma 5.2, $\triangle Z^e$ is finitely generated as a module over $\triangle(a_1,\ldots,a_s,b_1,\ldots,b_t,c_1,\ldots,c_r)$. Hence $H_0(\triangle Z,d_\sigma)$ is finitely generated over $\triangle(c_1,\ldots,c_r)$. Thus $H(\triangle Z,d_\sigma)$ is finitely generated as a module over $\triangle(c_1,\ldots,c_r)$, and so $\rho_0(H(\triangle Z,d_\sigma)) \le r$. The various inequalities we have derived give

$$\rho_0(H(\wedge Z,d)) = \rho_0(H(\wedge Z,d_\sigma)) = r.$$

Finally (using Lemma 5.5) $\chi_{\pi}(\triangle Z) + k = \dim Z^e - \dim W^o + \dim W^o - s - t = (s+r+t)-s-t = r$. Q.E.D.

Let $\triangle Z$ be as in the previous lemmata. Choose the integer N of Lemma 5.2 so that $H_k^p(\triangle Z, d_\sigma) \neq 0$ for some p < N. Choose a graded space U with basis u_1, \ldots, u_r and degree $u_i = N - 1$; thus $U = U^{\text{odd}}$. Define a KS complex $(\triangle Z \otimes \triangle U, D)$ by putting D = d in $\triangle Z$ and $Du_i = c_i$ (chosen as in Lemma 5.2). Then clearly $D_\sigma = d_\sigma$ in $\triangle Z$ and $D_\sigma u_i = c_i$.

- 5.7. LEMMA. With the hypotheses and notation above
- (i) $H(\land Z \otimes \land U, D)$ and $H(\land Z \otimes \land U, D_{\sigma})$ have finite dimension.
- (ii) $H_l(\triangle Z \otimes \triangle U, D_{\sigma}) = 0, l > k$, where $k = \dim W^o s t$.
- (iii) The map $H_k(\triangle Z, d_{\sigma}) \to H_k(\triangle Z \otimes \triangle U, D_{\sigma})$ is nonzero.

$$\left(\bigwedge Z \otimes \bigwedge U, D_{\sigma} \right) \rightarrow \left(\bigwedge Z^{e} / J \otimes \bigwedge (w_{1}, \ldots, w_{k}) \right)$$

which induces a cohomology isomorphism, and (ii) follows.

Finally $\triangle Z \to \triangle Z \otimes \triangle U$ is an isomorphism in degrees $\leq N-2$ and injective in degree N-1. Thus $H^p(\triangle Z, d_\sigma) \to H^p(\triangle Z \otimes \triangle U, D_\sigma)$ is injective for $p \leq N-1$. In particular $H^p(\triangle Z, d_\sigma) \to H^p(\triangle Z \otimes \triangle U)$ is nonzero for some p. Q.E.D.

Let $(\wedge Z \otimes \wedge U, D)$ be as in the previous lemma. Because dim $Z \oplus U < \infty$ and dim $H(\wedge Z \otimes \wedge U, D) < \infty$ we can apply the results of [4, §8]. These assert that $H(\wedge Z \otimes \wedge U, D)$ and $H(\wedge Z \otimes \wedge U, D_{\sigma})$ are Poincaré duality algebras with fundamental classes of the same degree, say n. Moreover if k is as in Lemma 5.7 then $H^n(\wedge Z \otimes \wedge U, D_{\sigma}) = H^n_k(\wedge Z \otimes \wedge U, D_{\sigma})$.

Consider now the inclusion λ : $(\triangle Z, d) \rightarrow (\triangle Z \otimes \triangle U, D)$. It induces a homomorphism of odd spectral sequences λ_i : $(E_i, d_i) \rightarrow (\check{E}_i, \check{d}_i)$ with

$$\lambda_0 = \lambda : (\land Z, d_\sigma) \rightarrow (\land Z \otimes \land U, D_\sigma)$$

and

$$\lambda_1 = \lambda_2 = \lambda_0^* : H(\wedge Z, d_a) \to H(\wedge Z \otimes \wedge U, D_a).$$

- 5.8. LEMMA. With the hypotheses and notation above the maps
- (i) $(\lambda_0^*)^n : H_k^n(\triangle Z, d_\sigma) \to H_k^n(\triangle Z \otimes \triangle U, D_\sigma),$
- (ii) $\lambda_{\infty}^{n+k,-k}: E_{\infty}^{n+k,-k} \to \check{E}_{\infty}^{n+k,-k}$, and
- (iii) $\lambda^* : H^n(\wedge Z, d) \to H^n(\wedge Z \otimes \wedge U, D)$

are surjective.

PROOF. (i) Because dim $H_k^n(\wedge Z \otimes \wedge U, D_{\sigma}) = 1$ we need only show that $(\lambda_0^*)^n$ is nonzero. By Lemma 5.7 we can (for some p) find $\alpha \in H_k^p(\wedge Z, d_{\sigma})$ with $\lambda_0^*(\alpha) \neq 0$. Since k is the top nonzero lower degree for $H(\wedge Z \otimes \wedge U, D_{\sigma})$, Poincaré duality gives an element $\beta \in H_0^{n-p}(\wedge Z \otimes \wedge U, D_{\sigma})$ such that $(\lambda_0^*\alpha) \cdot \beta \neq 0$.

But β is represented by some $\Phi \in (\triangle Z^e)^{n-p}$. Let γ be the class in $H_0^{n-p}(\triangle Z, d_{\sigma})$ represented by Φ . Then clearly $\lambda_0^*(\gamma) = \beta$ and so $\lambda_0^*(\alpha \cdot \gamma) = (\lambda_0^*\alpha) \cdot \beta \neq 0$.

(ii) and (iii) Choose a class ε in $H_k^n(\wedge Z, d_\sigma)$ such that $\lambda_0^* \varepsilon \neq 0$. Because $H_i(\wedge Z, d_\sigma) = 0$, i > k, a simple spectral sequence argument shows that ε survives to $\bar{\varepsilon} \in E_\infty^{n+k,-k}$. Clearly $\lambda_0^* \varepsilon$ survives to $\lambda_\infty^{n+k,-k}(\bar{\varepsilon})$; hence by [4, Theorem 3] the latter class is nonzero. Q.E.D.

REFERENCES

- 1. A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. No. 179 (1976).
 - 2. Y. Felix, Thèse, Université de Louvain la Neuve, Belgique.
 - 3. W. Greub et al., Connections, curvature, and cohomology. Vol. III, Academic Press, New York, 1975.
- 4. S. Halperin, Finiteness in the minimal model of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173-199.
- 5. _____, Lectures on minimal models, Publ. Internes de l'U.E.R. de Math. de Université de Lille I, 1977.
- 6. _____, Rational fibrations, minimal models and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199-223.
- 7. S. Halperin and J. D. Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), 233-279.
- 8. J.-L. Koszul, Sur un type d'algèbres différentielles en rapport aver la transgression, Colloque de Topologie (Espaces Fibrés) (Bruxelles, 1950), Thone, Liège; Masson, Paris, 1951, pp. 73-81.
- 9. L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58-93.
- 10. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1978), 269-331.
 - 11. O. Zariski and P. Samuel, Commutative algebra. Vol. II, Van Nostrand, Princeton, N. J., 1960.

Institut de Mathématiques Pures, Université de Louvain la Neuve, Louvain-la-Neuve, Belgique

Physical Sciences Division, Scarborough College, University of Toronto, Toronto, Ontario, Canada